1. Pull the Docker Image (CLI or Docker Desktop)¶
Available Docker Images:
- classical_segmentation X Gradio :
docker pull bilayer/classical_segmentation:1.0.0-gradio
- classical_segmentation X Jupyter_Notebook :
docker pull bilayer/classical_segmentation:1.0.0-jupyter
- cellpose_inference X Gradio :
docker pull bilayer/cellpose:1.0.1-gradio
- cellpose_inference X Jupyter_Notebook :
docker pull bilayer/cellpose:1.0.0-jupyter
- instanseg_inference X Gradio :
docker pull bilayer/instanseg:1.0.2_pixi_gradio
- instanseg_inference X Jupyter :
docker pull bilayer/instanseg:1.0.2_pixi_jupyter
Using CLI:
- Open a terminal and run:
docker pull bilayer/<repo_name>:<tag>
Using Docker Desktop (GUI):
- Open Docker Desktop, go to the Images tab, and search for
bilayer
- Pull the image directly from DockerHub
2. Run the Docker Container (CLI or Docker Desktop)¶
Using CLI:
- Gradio Interface (No Volume Mount):
docker run -it --rm bilayer/<repo_name>:<tag>
- Jupyter Interface (Requires Volume Mount):
docker run -it --rm -v /path/to/your/data:/bilayers/input_images bilayer/<repo_name>:<tag>
Using Docker Desktop (GUI):
- Gradio: Start the Image as-is, assign it a name, and select an available port (e.g., 8000 for Gradio)
- Jupyter: Use the Volume option to mount your data directory to /bilayers/input_images